αTubulin 67C and Ncd Are Essential for Establishing a Cortical Microtubular Network and Formation of the Bicoid mRNA Gradient in Drosophila

نویسندگان

  • Khalid Fahmy
  • Mira Akber
  • Xiaoli Cai
  • Aabid Koul
  • Awais Hayder
  • Stefan Baumgartner
چکیده

The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. To explain the generation of the gradient, the ARTS model, which is based on the observation of a bcd mRNA gradient, proposes that the bcd mRNA, localized at the anterior pole at fertilization, migrates along microtubules (MTs) at the cortex to the posterior to form a bcd mRNA gradient which is translated to form a protein gradient. To fulfil the criteria of the ARTS model, an early cortical MT network is thus a prerequisite. We report hitherto undiscovered MT activities in the early embryo important for bcd mRNA transport: (i) an early and omnidirectional MT network exclusively at the anterior cortex of early nuclear cycle embryos showing activity during metaphase and anaphase only, (ii) long MTs up to 50 µm extending into the yolk at blastoderm stage to enable basal-apical transport. The cortical MT network is not anchored to the actin cytoskeleton. The posterior transport of the mRNA via the cortical MT network critically depends on maternally-expressed αTubulin67C and the minus-end motor Ncd. In either mutant, cortical transport of the bcd mRNA does not take place and the mRNA migrates along another yet undisclosed interior MT network, instead. Our data strongly corroborate the ARTS model and explain the occurrence of the bcd mRNA gradient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

aTubulin 67C and Ncd Are Essential for Establishing a Cortical Microtubular Network and Formation of the Bicoid mRNA Gradient in Drosophila

The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. To explain the generation of the gradient, the ARTS model, which is based on the observation of a bcd mRNA gradient, proposes that the bcd mRNA, localized at the anterior pole at fertilization, migrates along microtubules (MTs) at the cortex to the posterior to form a bcd mRNA gradient whic...

متن کامل

Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model

The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. The SDD model (synthesis, diffusion, degradation) was proposed to explain the formation of the gradient. The SDD model states that the bcd mRNA is located at the anterior pole of the embryo at all times and serves a source for translation of the Bicoid protein, coupled with diffusion and un...

متن کامل

Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient.

The Bicoid (Bcd) protein gradient is generally believed to be established in pre-blastoderm Drosophila embryos by the diffusion of Bcd protein after translation of maternal mRNA, which serves as a strictly localized source of Bcd at the anterior pole. However, we previously published evidence that the Bcd gradient is preceded by a bcd mRNA gradient. Here, we have revisited and extended this obs...

متن کامل

The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA

The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein degradation. However, currently such models...

متن کامل

In Vivo Analysis of Drosophila bicoid mRNA Localization Reveals a Novel Microtubule-Dependent Axis Specification Pathway

Drosophila bicoid mRNA is synthesized in the nurse cells and transported to the oocyte where microtubules and Exuperantia protein mediate localization to the anterior pole. Fluorescent bicoid mRNA injected into the oocyte displays nonpolar microtubule-dependent transport to the closest cortical surface, and the oocyte microtubule cytoskeleton lacks clear axial asymmetry. Nonetheless, bicoid mRN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014